On explicit a priori estimates of the joint spectral radius by the generalized Gelfand formula

نویسندگان

  • Victor Kozyakin
  • Bernd Aulbach
چکیده

In various problems of control theory, non-autonomous and multivalued dynamical systems, wavelet theory and other fields of mathematics information about the rate of growth of matrix products with factors taken from some matrix set plays a key role. One of the most prominent quantities characterizing the exponential rate of growth of matrix products is the so-called joint or generalized spectral radius. In the work some explicit a priori estimates for the joint spectral radius with the help of the generalized Gelfand formula are obtained. These estimates are based on the notion of the measure of irreducibility (quasi-controllability) of matrix sets proposed previously by A. Pokrovskii and the author. PACS number 02.10.Ud; 02.10.Yn MSC 2000: 15A18; 15A60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On accuracy of approximation of the spectral radius by the Gelfand formula

The famous Gelfand formula ρ(A) = lim supn→∞ ‖A ‖ for the spectral radius of a matrix is of great importance in various mathematical constructions. Unfortunately, the range of applicability of this formula is substantially restricted by a lack of estimates for the rate of convergence of the quantities ‖A‖ to ρ(A). In the paper this deficiency is made up to some extent. By using the Bochi inequa...

متن کامل

Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra

In this paper, we discuss some properties of joint spectral {radius(jsr)} and  generalized spectral radius(gsr)  for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but  some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...

متن کامل

On the Remarkable Formula for Spectral Distance of Block Southeast Submatrix

‎‎‎This paper presents a remarkable formula for spectral distance of a given block normal matrix $G_{D_0} = begin{pmatrix}‎ ‎A & B \‎ ‎C & D_0‎ ‎end{pmatrix} $ to set of block normal matrix $G_{D}$ (as same as $G_{D_0}$ except block $D$ which is replaced by block $D_0$)‎, ‎in which $A in mathbb{C}^{ntimes n}$ is invertible‎, ‎$ B in mathbb{C}^{ntimes m}‎, ‎C in mathbb{C}^{mti...

متن کامل

Cartesian decomposition of matrices and some norm inequalities

Let ‎X be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎Cartesian decomposition ‎‎X = A + i ‎B‎‎‎‎‎, ‎where ‎‎A ‎and ‎‎B ‎are ‎‎‎n ‎‎times n‎ ‎Hermitian ‎matrices. ‎It ‎is ‎known ‎that ‎‎$Vert X Vert_p^2 ‎leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎Vert . Vert_p$ ‎is ‎the ‎Schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎In this paper‎, this inequality and some of its improvements ...

متن کامل

ar X iv : 0 90 9 . 31 70 v 1 [ m at h . R A ] 1 7 Se p 20 09 On the explicit Lipshitz constant for the joint spectral radius ∗

In 2002 F. Wirth has proved that the joint spectral radius of irreducible compact families of matrices is locally Lipshitz continuous as a function of the matrix family. In the paper, an explicit formula for the related Lipshitz constant is obtained. PACS number 02.10.Ud; 02.10.Yn MSC 2000: 15A18; 15A60

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008