On explicit a priori estimates of the joint spectral radius by the generalized Gelfand formula
نویسندگان
چکیده
In various problems of control theory, non-autonomous and multivalued dynamical systems, wavelet theory and other fields of mathematics information about the rate of growth of matrix products with factors taken from some matrix set plays a key role. One of the most prominent quantities characterizing the exponential rate of growth of matrix products is the so-called joint or generalized spectral radius. In the work some explicit a priori estimates for the joint spectral radius with the help of the generalized Gelfand formula are obtained. These estimates are based on the notion of the measure of irreducibility (quasi-controllability) of matrix sets proposed previously by A. Pokrovskii and the author. PACS number 02.10.Ud; 02.10.Yn MSC 2000: 15A18; 15A60
منابع مشابه
On accuracy of approximation of the spectral radius by the Gelfand formula
The famous Gelfand formula ρ(A) = lim supn→∞ ‖A ‖ for the spectral radius of a matrix is of great importance in various mathematical constructions. Unfortunately, the range of applicability of this formula is substantially restricted by a lack of estimates for the rate of convergence of the quantities ‖A‖ to ρ(A). In the paper this deficiency is made up to some extent. By using the Bochi inequa...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملOn the Remarkable Formula for Spectral Distance of Block Southeast Submatrix
This paper presents a remarkable formula for spectral distance of a given block normal matrix $G_{D_0} = begin{pmatrix} A & B \ C & D_0 end{pmatrix} $ to set of block normal matrix $G_{D}$ (as same as $G_{D_0}$ except block $D$ which is replaced by block $D_0$), in which $A in mathbb{C}^{ntimes n}$ is invertible, $ B in mathbb{C}^{ntimes m}, C in mathbb{C}^{mti...
متن کاملCartesian decomposition of matrices and some norm inequalities
Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements ...
متن کاملar X iv : 0 90 9 . 31 70 v 1 [ m at h . R A ] 1 7 Se p 20 09 On the explicit Lipshitz constant for the joint spectral radius ∗
In 2002 F. Wirth has proved that the joint spectral radius of irreducible compact families of matrices is locally Lipshitz continuous as a function of the matrix family. In the paper, an explicit formula for the related Lipshitz constant is obtained. PACS number 02.10.Ud; 02.10.Yn MSC 2000: 15A18; 15A60
متن کامل